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1. Introduction
During the past two decades, research in software quality has put much effort into the area of fault
prediction. Despite these efforts, unsolved questions still remain, see particularly Fenton and Neil
(1999a). Recently, a number of studies have suggested the use of Bayesian statistics for predicting
faults (Fenton and Neil, 1999a; 1999b). So far, different types of faults have been analyzed as a
group, using Bayesian statistics. In order to make better predictions, we suggest that faults be
categorized and that Bayesian statistics be used to update our knowledge of the fault distribution
between categories.

Most studies in the area of software fault prediction assume faults to be homogeneous in respect to
their causes, for example Khoshgoftaar and Munson (1990), Compton and Withrow (1990) and
Fenton and Neil (1999a). These studies treat faults as if they had the same characteristics and are
caused by the same factors. The underlying assumption that faults are homogeneous is dangerous.
If a novice programmer makes a careless mistake in the code and an experienced programmer
makes a design error in a very complex part of the software, can the faults that arise from these
mistakes be homogeneous? The answer is probably No. To assess the root causes of different faults,
the faults may need to be categorized according to fault type.

Fault categorization is frequently used in areas other than software engineering. An example is
Failure Mode, Effects and Criticality Analysis (FMECA), probably the most widely used and most
effective analysis method for design reliability (O'Connor, 1995). Some researchers have suggested
a categorization of faults into different fault types also in software engineering, e.g. Basili and
Weiss (1984) and P1044 (1992). Categorization can then serve both as a tool to facilitate
improvement and to improve the prediction model.

Apart from fault categorization, there are other problems in the area of software fault prediction.
Fenton and Neil (1999a) introduced Bayesian belief networks in software fault prediction. A
concept similar to Bayesian belief networks is influence diagrams. These enable reasoning under
uncertainty and combine visual representation with a good mathematical basis. One important
feature of influence diagrams is the possibility of allowing uncertainty about variables not
ordinarily included in an analysis to influence the result, e.g. the type of tests performed, how
difficult a problem is and what procedures were used. Such variables probably affect the number of
faults to a high degree and in order to model these variables we can use both empirical evidence
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and expert judgement if we utilize an influence diagram. The expert judgement becomes vital if we
have only partial or subjective information about some of the variables.

In this paper, we present a model for updating knowledge about fault types in a coherent manner
using Bayesian statistics. Similar approaches have been presented in different environments by
authors such as Barlow (1998) and Sörensen Ringi (1995). The model is illustrated using an
example from industry. It is important to note that this paper does not claim to present a complete
fault prediction model. The results presented are intended to be tentative and hence conducive to
further theory development.

In the next section, we will briefly explain the overall Bayesian approach of the model. The third
section deals with the technical details. Finally, we compile the ideas by showing an application of
the model from industry. In the two last parts, we also comment on various difficulties and
constraints of the model.

The Bayesian Approach
The various steps in the Bayesian approach that is used can be seen in Figure 1.
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Figure 1 The different steps in the model

We have two different kinds of information, expert knowledge and empirical data. The experts’
prior is (hopefully!) based on previous experience and all the differences between this project and
the preceding projects. Both the experts’ prior and the fault data are modeled using probability
distributions. Instead of combining empirical data and expert knowledge through guesswork,
Bayesian statistics is used. By introducing a formalized model, we achieve a consensus in our
beliefs regarding the number of faults introduced instead of guessing the future number of faults.
For further reading on Bayesian statistics and reliability, see e.g. Barlow (1998) and Crowder
Kimber et al. (1991).

2. Statistical calculations
This section includes the calculations necessary for the model. Although we have tried to keep the
technical details to a minimum, it may be hard for a practitioner or researcher with little experience
in statistics to understand every part.
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2.1. Model the knowledge
Software development consists of a large number of error possibilities, each giving rise to a fault
with a small probability. Hence, by using a Poisson distribution, we acknowledge the special
characteristic of the data, i.e. counts of events with small probabilities of the event. Software
reliability models typically use such discrete distributions, see for example Musa (1998). The total
number of faults is modeled as, )( sPon λ∈ .

The parameter sλ  in the Poisson distribution consists of two parts. The first part, the intensity λ ,
is distributed as the natural conjugate prior density for the Poisson distribution, namely the gamma
distribution, ),( βαλ Γ∈ . The gamma distribution is a probability distribution rich enough to
accommodate the prior knowledge. The gamma distribution also supports easy calculations since it
is the natural conjugate prior density for the Poisson distribution.

In the model, a deterministic quantity is included termed s . The deterministic quantity s  is an
essential part of the model since it allows us to include the causes that make a system more fault-
prone. If we establish that a small system has fewer faults than a large one, we can incorporate this
knowledge into s , e.g. s  can equal the lines of code (LOC) in the software. We can then predict
faults/LOC instead of the number of faults. Instead of LOC, other metrics or combination of
metrics can be used. Other possible metrics include complexity metrics, coupling metrics, difficulty
of the problem, etc. In the end, it is the managers and developers who decide which sort of
metric/metrics are to be used. One interesting use of the model arises when a new version of a
software product is developed. Large-scale software systems are rarely built from scratch: instead,
modifications and enhancements of existing systems are usually employed. Knowledge about
product complexity and the quality of previous releases can be taken into account by using the
deterministic quantity s . If the expert group concludes that it takes approximately 10 percent new
work to complete the new version, this knowledge can be incorporated in s . If s  was previously
given the value 1, the new value for s  in the new version should be 0.1.

How are the parameters α  and β  in the gamma distribution determined? The parameters α  and
β  can be assessed by letting the experts express their belief in the intensity λ . The intensity
equals the number of faults if 1=s  and the fault density if LOCs = . The second step is to let the
experts express their uncertainty about λ . If the experts’ belief is described with the negative
binomial distribution, the constants α  and β  can be obtained as two of the parameters in the
negative binomial distribution.

Typically, the experts, from past experience, have some idea of the proportional occurrence of
faults between different fault types in a system. Fault types can naturally be modeled like a
multinomial distribution since we are dealing with a number of categories (fault types) and
observations in each category (faults in each fault type). To model the number of faults in each fault
type, let 1)(k  ≥k  be the number of fault types and k) ...., 2, ,1( =lxl the number of faults classified
in the category labeled l . Also, let the chance “probabilities” be y=),...,,( 21 kyyy . The limiting
proportion of faults ly  is referred to as the “chance” (or “risk”) that a specified item will be
defective. A chance, however, is not a person’s probability but an unknown parameter of the
binomial model based on the concept of a limiting proportion (which is not really observable)
(Barlow, 1998).

Since the chance “probabilities” from the multinomial distribution are the parameters of interest,
the natural conjugate prior density for these parameters is used, the dirichlet distribution. The
dirichlet distribution is a rich enough probability distribution to accommodate prior knowledge, just
as the gamma distribution was for the total number of faults. A change in the parameters
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kθθθ ,...,, 21  in the dirichlet distribution corresponds to a change in the knowledge about the
distribution of the faults across fault types. To express knowledge in the parameter
è ( kθθθ ,...,, 21 ), the expert can first assign a percentage to the different fault types which indicates
how common a certain fault type is in relation to another fault type. To express knowledge in
absolute terms for obtaining the values of the parameter è , the expert can state how much
confidence he/she has in the prediction in relation to empirical data. For example, if the a priori
knowledge is worth the same as 100 counted faults in a real system, 100 is divided between the
different parameters according to the percentage set earlier.

2.2. Updating knowledge
One way of visualizing the procedure of updating knowledge is by using an influence diagram.
Influence diagrams are graphical representations of the relationships between random quantities
which are judged relevant to a real problem (Barlow, 1998).

The model, visualized by an influence diagram, is developed as follows.

Step 1: The first step is to achieve a consensus about prior knowledge, i.e. the number of faults and
the proportion of faults in each fault type for a certain system. As explained above, knowledge is
modeled with the parameters α , β  and the vector è  ( )kθθθ ,...,, 21 . Two circles represent the
deterministic quantity s . The parameters model the uncertainty concerning the fault distribution,
i.e. λ  and the vector y .  

Step 2: The faults and the fault types are measured during a project (i ). This data should have an
effect on knowledge. Let the empirical data be denoted by in  and the vector ix . Note that in

equals the sum of the elements in the vector ix .

Step 3: Knowledge is revised in the light of the new data.

Step 4: The last step is to predict the future project ( j ), the total number of faults and the number

of faults of a certain fault type. Let this future prediction be denoted by jn  and the vector jx .

The influence diagram shows the relationship between our random and deterministic quantities,
Figure 2. The arcs correspond to possible conditional dependence.
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Figure 2 Influence diagram for project i and j
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By using the laws of probability, we can update knowledge about fault types and then predict the
fault content of the next system. We assume that λ  and y  may be treated as independent, i.e.
knowledge of one of these quantities does not affect knowledge of the other. This assessment of
prior information is quite plausible from our point of view. The total number of faults may vary
without changing the proportional occurrence of faults in fault types. Naturally, there may be
differences in the proportional occurrence of faults between different fault types in one system
compared to another. The reason is quite simple: different fault types have different root causes.
However, the model provided is a first step in understanding and modeling the way in which faults
vary across fault types. Therefore, it seems reasonable to simplify the model by assuming λ  and y
as independent, although further enhancements of the model should explore the justification of such
an assumption.

To update the information about λ  and y , i.e. to calculate the probability of λ  and y  given the

new data in  and ix ( ( )iinP xy ,,λ ), we need to reverse the arc between the data from the project
and the a priori information. In order to update knowledge, i.e. reverse the arc, Bayes’ theorem is
applied.

Since we have used the natural conjugate distributions, the Bayesian updating algorithm provides
posterior distributions that are still within the gamma and dirichlet families respectively. This
means that we do not have to calculate the probabilities using Bayes’ theorem whenever we use the
model. The parameters are simply updated as:

n+→ αα

1+→ ββ

lll n+→θθ

Since our prior and posterior probability distributions are parameterized in the same way, the
predictive distributions of faults and fault types are calculated in the same way regardless of
whether we only have prior information or observed data from the system. To predict the future
number of faults for a new, similar system, the negative binomial distribution is used. The
prediction is obtained by using the parameters α  and β  from the gamma posterior distribution in
the negative binomial distribution. It is more difficult to predict the number of faults in the different
fault types. However, the posterior dirichlet distribution provides the expected number of faults in
each fault type for a new system. This should in most instances be sufficient and only under special
circumstances should a complete prediction be necessary. One such case arises when resource
allocation to testing and inspection techniques based on fault type is important. In such a case, the
robustness of the expected number of faults in one fault type could be useful. In order to assess the
robustness, simulations of the so-called Dirichlet-Multinomial Gamma-Poisson model could be
performed. For further information, see Sörensen Ringi (1995).

3. Application
The empirical data used to illustrate the model are gathered from a study at Saab Aerospace. The
application is intended to demonstrate how knowledge about the number of faults in each fault type
can be updated.
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3.1. The system
The system investigated is a subsystem, Built In Test (BIT), of the Electrical Flight Control System
(EFCS) in JAS 39 Gripen, a fighter aircraft developed and built by Saab Aerospace. Its main
objective is to ensure, prior to each flight, that the state of the EFCS hardware is such that the flight
can be performed safely.

During the development of BIT, Saab Aerospace followed the guidelines in the DOD-STD-2167A
standard, which is further described in the (U.S. Department of Defense, 1988). The program is
divided into 256 modules. It is a complex program, resulting in nearly 1500 faults to date. The code
was programmed mostly using ADA (204 modules), which was the standard programming
language. We have analyzed only the faults in the ADA modules (1112 faults) in order to avoid the
complication of more than one programming language becoming an explanatory factor.

3.2. Using the model

The following section describes a brief examination of the application at Saab Aerospace. This
section is intended only to provide an idea of how the model could be applied and should not be
taken as state-of-the-art practice. The model needs to be tailored more or less from organization to
organization.

No detailed explanation of the different fault types used is provided. The reason is simple. Fault
types must be customized to a company’s own organization to fully benefit from the categorization.
The definitions of the fault types are meaningful to the organization that collected and analyzed the
data, but may not be suitable in other environments

3.2.1. Step 1

The constant s  was chosen to describe how demanding the system was to develop. Since no other
system was under development, s  was given the value 1.

Note that the a priori information was collected after the system was developed. This is of course
not the correct procedure to employ, but was the only choice left since the system had already been
developed. However, the members of the expert group were not aware of the actual result in terms
of the number of faults across fault types.

Cooke (1991) states that using the Bayesian approach for multiple experts is rather tentative and
better solutions may be anticipated. It was therefore decided that only one developer and one
specialist from Saab Aerospace should be included in the expert group. It is probably more
important to make use of persons who are experts in their field instead of having many persons in
the expert group. However, this is a choice of those who apply the model.

First, the expert knowledge needs to be modeled. As was explained earlier, the gamma and dirichlet
distribution distributions are used to model knowledge. Instead of forcing the experts to assign
figures to the parameters, the following approach was used. First, the experts had to predict the
number of faults in the software, i.e. specify their belief in a specific number (λ ). The second step
was to let them express their uncertainty about these figures (uncertainty about λ ). After a number
of different approaches, it proved easiest to show them distributions expressing various levels of
uncertainty. If they stated that they were fairly certain about the result, we tried to express this by
showing them a distribution concentrated around their prediction. If, on the other hand, they
reported large uncertainty we used a distribution with large variation. The whole procedure was
conducted for each member of the expert group, after which they had to reach agreement. They
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discussed their numbers and graphs and explained their different assumptions behind their
predictions. The model of their knowledge can be seen as the a priori distribution in Figure 3.
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Figure 3 The prior distribution of the total number of faults

To attain the experts’ knowledge regarding the fault types the following procedure was used. First
they had to set a percentage on the different fault types which indicated how common a certain fault
type was in relation to another fault type. To express their knowledge in absolute terms, in order to
obtain the values for the parameters ( kθθθ ,...,, 21 ) in the dirichlet distribution, they had to state
how much confidence they had in their prediction in relation to empirical data. If they felt that the a
priori knowledge was worth as much as 500 counted faults in a real system, 500 was divided
between the different parameters according to the percentage set earlier. The results can be seen in
Table 1.

To establish a good prior, a preceding system was analyzed. The experts had to take into account all
the differences between this project and the preceding project. Examples of issues that need to be
considered are the type of tests used, the processes and procedures used and the complexity of the
systems.

The procedure used, in which experts discussed their different beliefs, improved the understanding
of the software development process. Instead of guessing the future number of faults, a consensus
was achieved regarding belief about the number of faults introduced. This discussion also indicates
what the experts believe are the reasons behind the faults, which can be assessed by performing
studies of the desired causes.
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3.2.2. Step 2

From the development of the system, information about the number of faults was obtained. The
result can be seen in Table 1. The faults were distributed across seven fault types and the total
number of faults found was 1112. The experts’ belief corresponds to the parameters è and the
actual distribution corresponds to the vector x .

Fault type Experts’
belief

Actual
distribution

Updated
belief

Computation 5% 3% 4%

Data handling 20% 26% 23%

Data problem 5% 6% 5%

Document quality 20% 12% 17%

Documentation 20% 22% 21%

Interface/timing 10% 22% 15%

Logic 20% 9% 15%

Total 100% 100% 100%

Table 1 Information about the developed system

3.2.3. Step 3

Both the information about the total number of faults and its variation, and the distribution of faults
across the fault types, was updated by combining the experts’ prior knowledge with the empirical
results. Figure 4 shows the updated distribution. It can be seen that the experts’ belief was in good
agreement with the actual number of faults. However, some uncertainly about the outcome was
expressed by the experts. The result of the model was a more confident belief with smaller
uncertainty about the number of faults in a future system of this type.
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Figure 4 The prior and posterior distribution of the total number of faults

Knowledge about the distribution across fault types was also updated by combining expert
knowledge with empirical results. See Table 1 for the results.
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Potential short-term benefits are better inspection and testing processes. These can be improved by
learning what types of faults are made and what types of faults are absent or missed in different
phases. One suggested improvement is to introduce training activities in creating better design
documents, which should focus on avoiding problems in the fault types data handling,
documentation, document quality and timing/interface. The faults introduced in the coding phase
were mainly data handling faults, which can be dealt with by creating a list of common mistakes of
data handling faults that is fed back to each programmer. This makes the programmer more aware
of the problem so that he becomes more careful about making this sort of mistakes. A fault type
distribution profile can be said to serve as a measurement tool for helping help both management
and technical personnel isolate faults earlier in the development phases.

A large number of interface/timing faults implies that a problem exists with the synchronization
between the modules and between the modules and the hardware. The close interaction in BIT
between the hardware and software may be the explanation. BIT was programmed to use three
channels, which means that the execution of the program is simultaneously executed in three
different systems (three processors, three memories, etc.). The use of three channels requires the
programmer to have detailed system knowledge. This was not recognized before the systems were
developed, as is evident from the experts’ belief of approximately 100 faults in the interface/timing
fault type. The actual result was in the region of 250 faults and since these faults were quite
expensive, in terms of correction, activities to reduce the number of interface/timing faults should
be introduced before the next system is developed. Certain training activities may be introduced to
give the programmer more knowledge about the surrounding environment and the use of three
channels. The composition of the team that developed BIT is also highly relevant when discussing
system knowledge. Choosing consultants with prior experience from projects similar to BIT would
probably not only improve their own performance but also allow the other project members to
better understand the problems. If the model had not been used, too much attention would have
been directed towards logic faults instead of towards the interface/timing faults in the next system
developed.

A prediction of the number of faults introduced provides useful help in deciding when to release the
software to the customer. Such a prediction helps both the organization and customers to make
reliable decisions concerning the implementation date of the software.

4. Concluding remarks
To assess the root causes of faults, we may need to categorize the faults according to fault type. The
reason is simple: different causes affect certain fault types in a specific way. Categorization can
serve as a tool both to facilitate improvement by assessing the causes and to improve the prediction
model.

We have identified that one important task is to combine expert knowledge about fault types with
empirical fault data from previous and current projects. Expert judgement becomes vital if we only
have partial or subjective information about some of the important variables. In this paper, a
Bayesian approach to the problem is proposed. When using the method, knowledge about fault
types increases and can be used to analyze the root cause of each fault type respectively.

The ability to use influence diagrams to predict faults depends on the regularity and stability of the
development process. Organizations that do not collect metrics or follow the prescribed
development process cannot hope to apply influence diagrams in their organizations successfully.

As was mentioned before, the model is intended to be an intermediate step and provide an
opportunity for refinement and reformulation. The treatment of the issues discussed in this work is
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only a first step; further research is certainly needed before the method gains any real practical
importance. One improvement area is undoubtedly the way in which expert knowledge is obtained.
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